\(\int x (1+x)^{3/2} (1-x+x^2)^{3/2} \, dx\) [498]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 325 \[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\frac {18}{91} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {54 \sqrt {1+x} \sqrt {1-x+x^2}}{91 \left (1+\sqrt {3}+x\right )}+\frac {2}{13} x^2 \sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}+\frac {18 \sqrt {2} 3^{3/4} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )} \]

[Out]

18/91*x^2*(1+x)^(1/2)*(x^2-x+1)^(1/2)+2/13*x^2*(x^3+1)*(1+x)^(1/2)*(x^2-x+1)^(1/2)+54/91*(1+x)^(1/2)*(x^2-x+1)
^(1/2)/(1+x+3^(1/2))+18/91*3^(3/4)*(1+x)^(3/2)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2^(1/2)*(x
^2-x+1)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-27/91*3^(1/4)*(1+x)^(3/2
)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(x^2-x+1)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1
+x+3^(1/2))^2)^(1/2)/(x^3+1)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {823, 285, 309, 224, 1891} \[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\frac {18 \sqrt {2} 3^{3/4} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )}-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )}+\frac {18}{91} \sqrt {x+1} \sqrt {x^2-x+1} x^2+\frac {54 \sqrt {x+1} \sqrt {x^2-x+1}}{91 \left (x+\sqrt {3}+1\right )}+\frac {2}{13} \sqrt {x+1} \sqrt {x^2-x+1} \left (x^3+1\right ) x^2 \]

[In]

Int[x*(1 + x)^(3/2)*(1 - x + x^2)^(3/2),x]

[Out]

(18*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2])/91 + (54*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(91*(1 + Sqrt[3] + x)) + (2*x^2
*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(1 + x^3))/13 - (27*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*S
qrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])
/(91*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (18*Sqrt[2]*3^(3/4)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(
1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(91*
Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3))

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[
(d + e*x)^FracPart[p]*((a + b*x + c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p]), Int[(f + g*x)*(a*d + c*e*x^
3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[m, p] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {1+x} \sqrt {1-x+x^2}\right ) \int x \left (1+x^3\right )^{3/2} \, dx}{\sqrt {1+x^3}} \\ & = \frac {2}{13} x^2 \sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )+\frac {\left (9 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int x \sqrt {1+x^3} \, dx}{13 \sqrt {1+x^3}} \\ & = \frac {18}{91} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {2}{13} x^2 \sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )+\frac {\left (27 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {x}{\sqrt {1+x^3}} \, dx}{91 \sqrt {1+x^3}} \\ & = \frac {18}{91} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {2}{13} x^2 \sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )+\frac {\left (27 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx}{91 \sqrt {1+x^3}}+\frac {\left (27 \left (-1+\sqrt {3}\right ) \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{91 \sqrt {1+x^3}} \\ & = \frac {18}{91} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {54 \sqrt {1+x} \sqrt {1-x+x^2}}{91 \left (1+\sqrt {3}+x\right )}+\frac {2}{13} x^2 \sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}+\frac {18 \sqrt {2} 3^{3/4} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.33 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.75 \[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\frac {\sqrt {1+x} \left (4 x^2 \left (1-x+x^2\right ) \left (16+7 x^3\right )-\frac {27 \sqrt {2} \sqrt {\frac {-i+\sqrt {3}+2 i x}{-3 i+\sqrt {3}}} \left (\left (-3 i+\sqrt {3}\right ) E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )-\left (-i+\sqrt {3}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}\right ),\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )\right )}{\sqrt {-\frac {i (1+x)}{i+\sqrt {3}-2 i x}}}\right )}{182 \sqrt {1-x+x^2}} \]

[In]

Integrate[x*(1 + x)^(3/2)*(1 - x + x^2)^(3/2),x]

[Out]

(Sqrt[1 + x]*(4*x^2*(1 - x + x^2)*(16 + 7*x^3) - (27*Sqrt[2]*Sqrt[(-I + Sqrt[3] + (2*I)*x)/(-3*I + Sqrt[3])]*(
(-3*I + Sqrt[3])*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*I - Sqr
t[3])] - (-I + Sqrt[3])*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*
I - Sqrt[3])]))/Sqrt[((-I)*(1 + x))/(I + Sqrt[3] - (2*I)*x)]))/(182*Sqrt[1 - x + x^2])

Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.71

method result size
risch \(\frac {2 x^{2} \left (7 x^{3}+16\right ) \sqrt {1+x}\, \sqrt {x^{2}-x +1}}{91}+\frac {54 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) E\left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) F\left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right ) \sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}}{91 \sqrt {x^{3}+1}\, \sqrt {1+x}\, \sqrt {x^{2}-x +1}}\) \(230\)
elliptic \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}\, \left (\frac {32 x^{2} \sqrt {x^{3}+1}}{91}+\frac {54 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) E\left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) F\left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{91 \sqrt {x^{3}+1}}+\frac {2 x^{5} \sqrt {x^{3}+1}}{13}\right )}{x^{3}+1}\) \(235\)
default \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \left (14 x^{8}+27 i \sqrt {3}\, \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, F\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )+46 x^{5}-162 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, E\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )+81 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, F\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )+32 x^{2}\right )}{91 x^{3}+91}\) \(366\)

[In]

int(x*(1+x)^(3/2)*(x^2-x+1)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/91*x^2*(7*x^3+16)*(1+x)^(1/2)*(x^2-x+1)^(1/2)+54/91*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((
x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1
/2)*((-3/2-1/2*I*3^(1/2))*EllipticE(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2
)))^(1/2))+(1/2+1/2*I*3^(1/2))*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3
^(1/2)))^(1/2)))*((1+x)*(x^2-x+1))^(1/2)/(1+x)^(1/2)/(x^2-x+1)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.12 \[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\frac {2}{91} \, {\left (7 \, x^{5} + 16 \, x^{2}\right )} \sqrt {x^{2} - x + 1} \sqrt {x + 1} - \frac {54}{91} \, {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) \]

[In]

integrate(x*(1+x)^(3/2)*(x^2-x+1)^(3/2),x, algorithm="fricas")

[Out]

2/91*(7*x^5 + 16*x^2)*sqrt(x^2 - x + 1)*sqrt(x + 1) - 54/91*weierstrassZeta(0, -4, weierstrassPInverse(0, -4,
x))

Sympy [F]

\[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\int x \left (x + 1\right )^{\frac {3}{2}} \left (x^{2} - x + 1\right )^{\frac {3}{2}}\, dx \]

[In]

integrate(x*(1+x)**(3/2)*(x**2-x+1)**(3/2),x)

[Out]

Integral(x*(x + 1)**(3/2)*(x**2 - x + 1)**(3/2), x)

Maxima [F]

\[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\int { {\left (x^{2} - x + 1\right )}^{\frac {3}{2}} {\left (x + 1\right )}^{\frac {3}{2}} x \,d x } \]

[In]

integrate(x*(1+x)^(3/2)*(x^2-x+1)^(3/2),x, algorithm="maxima")

[Out]

integrate((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x, x)

Giac [F]

\[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\int { {\left (x^{2} - x + 1\right )}^{\frac {3}{2}} {\left (x + 1\right )}^{\frac {3}{2}} x \,d x } \]

[In]

integrate(x*(1+x)^(3/2)*(x^2-x+1)^(3/2),x, algorithm="giac")

[Out]

integrate((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x, x)

Mupad [F(-1)]

Timed out. \[ \int x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2} \, dx=\int x\,{\left (x+1\right )}^{3/2}\,{\left (x^2-x+1\right )}^{3/2} \,d x \]

[In]

int(x*(x + 1)^(3/2)*(x^2 - x + 1)^(3/2),x)

[Out]

int(x*(x + 1)^(3/2)*(x^2 - x + 1)^(3/2), x)